BIOENGINEERING

Viscofan

PRIMARY CELLS TESTED ON CCC

The Collagen Cell Carrier[®] (CCC) is a universal scaffold for adherent primary cells and stem cells for *in vitro* and *in vivo* use. It creates a natural environment for cell attachment, growth and differentiation in applications ranging from simple cell monolayer cultures to the reconstruction of complex 3D tissue cultures on top of the membrane.

As a universal matrix, the CCC facilitates the development of cell-based assays with authentic cell performance. Strong and biocompatible it also serves perfectly as a cell-supporting, suturable carrier for pinpointed cell implantation.

ORGAN & CELL TYPE	HUMAN	MURINE	RAT	CANINE	PORCINE	BOVINE
🖏 Heart & vascular system						
Neonatal cardiac fibroblasts				√1		
Embryonic cardiomyocytes			√2			
Neonatal cardiomyocytes			\checkmark			
Cardiomyocytes	~					
Embryonic ventricular myocytes			\checkmark			
Cardiac microvascular endothelial cells	√ 2, 3					
🔍 Eyes						
Cornea endothelial cells			\checkmark			\checkmark
Cornea epithelial cells	\checkmark		~			
Iris pigment epithelial cells						\checkmark
Retinal pigment epithelial cells						~
🕞 Bone & cartilage						
Osteoblast differentiated from adipose-derived MSCs	√4					
Chondrocytes	\checkmark					
Chondrocytes differentiated from adipose-derived MSCs			√ 5			
Meniscus cells	√ 6					
🚯 Nervous system						1
Astrocytes		\checkmark				
Fetal dopamine neuronal cells			\checkmark	807		
Fetal neocortical neuronal cells			\checkmark			
Dorsal root ganglion neuronal cells			\checkmark			
Enteric neuronal cells	~					
📿 Liver & pancreas						
Hepatocytes		\checkmark			14.1	
Pancreatic cells		\checkmark				
🚺 Skin						
Keratinocytes		√7		3		
Epidermal keratinocytes (hEKs)	√ 8					
Melanocytes from hair follicle	√ 9					
💢 Urogenital tract		· · · · · ·				
Urothelial cells	√ 10, 11, 12	\checkmark			√ 10	
😚 Stem cells						
Nucleus pulposus (NP) cells	√13					
Dental pulp pluripotent-like stem cells (DPPSC)	√14					
Mesenchymal stem cells (different tissues)	√ 2, 3, 15, 18		√ 16, 17		√ 17	

Not sure how your cells will perform on the CCC? Need support with cell detachment or staining?

Cavantor™ | vwr.com

PRIMARY CELLS TESTED ON CCC

Vischfan

BIOENGINEERING

LITERATURE

🕙 Heart & vascular system

¹Castellano D et al., 2014, A Comparison of Electrospun Polymers Reveals Poly(3-Hydroxybutyrate) Fiber as a Superior Scaffold for Cardiac Repair, Stem Cells and Development, 23(13):1479-1490

²Valarmathi M T et al., 2018, Functional Tissue Engineering: A Prevascularized Cardiac Muscle Construct for Validating Human Mesenchymal Stem Cells Engraftment Potential In Vitro, Tissue Engineering Part A, 24(1-2)

³Valarmathi M T et al., 2017, A Novel Human Tissue-Engineered 3-D Functional Vascularized Cardiac Muscle Construct, Front Cell Dev Biol, 5:2

🕀 Bone & cartilage

⁴Jafary F et al., 2017, Osteoblast Differentiation on Collagen Scaffold with Immobilized Alkaline Phosphatase, Int J Organ Transplant Med, 8(4):195-202

⁵Szychlinska M A et al., 2017, Engineered cartilage regeneration from adipose tissue derived-mesenchymal stem cells: A morphomolecular study on osteoblast, chondrocyte and apoptosis evaluation, Exp Cell Res 15;357(2):222-235 ⁶Reboredo J, 2014, Tissue Engineering of a meniscus - from a biomaterial to the implant, PhD thesis, University of Würzburg

🚺 Skin

⁷Kröger C et al., 2013, Keratins control intercellular adhesion involving PKC-a–mediated desmoplakin phosphorylation, J Cell Biol, 201(5):681–692

⁸Jannasch M et al., 2015, Development and application of three-dimensional skin equivalents for the investigation of percutaneous worm invasion, Experimental Parasitology 150:22–30

²Savkovich V et al., 2012, Melanocytes from the Outer Root Sheath of Hair Follicles Cultivated on Collagen Membrane Improve their Melanotic Properties, J Tissue Sci Eng, S:11

💛 Urogenital tract

- ¹⁰Vaegler M et al., 2015, A Bovine Collagen Type I-Based Biodegradable Matrix as a Carrier for Tissue-Engineered Urothelium, J Stem Cell Res Ther, 5:4
- ¹¹Daum L et al., 2015, In Vivo Biocompatibility Testing of a Collagen Cell Carrier Seeded with Human Urothelial Cells in Rats, J Cell Sci Ther, 6:4

¹²Aufderklamm S et al., 2017, Collagen cell carriers seeded with human urothelial cells for urethral reconstructive surgery: first results in a xenograft minipig model, World J Urol 35:1125-1132

😚 Stem cells

- ¹³Mern D S et al., 2013, A Combinatorial Relative Mass Value Evaluation of Endogenous Bioactive Proteins in Three-Dimensional Cultured Nucleus Pulposus Cells of Herniated Intervertebral Discs: Identification of Potential Target Proteins for Gene Therapeutic Approaches, PLoS ONE 8(11)
- ¹⁴Núñez-Toldrà R et al., 2017, Dental pulp pluripotent-like stem cells (DPPSC), a new stem cell population with chromosomal stability and osteogenic capacity for biomaterials evaluation, BMC Cell Biology, 18:21
- ¹⁵Schmidt T et al., 2011, Evaluation of a Thin and Mechanically Stable Collagen Cell Carrier, Tissue Engineering Part C: Methods 17(12)
- ¹⁶Araña M et al., 2013, Preparation and characterization of collagen-based ADSC-carrier sheets for cardiovascular application, Acta Biomaterialia, 9(4):6075-6083
- ¹⁷Araña M et al., 2014, Epicardial delivery of collagen patches with adipose-derived stem cells in rat and minipig models of chronic myocardial infarction, Biomaterials 35(1):143-151
- ¹⁸López-Díaz de Cerio A et al., 2021, Preclinical Evaluation of the Safety and Immunological Action of Allogeneic ADSC-Collagen Scaffolds in the Treatment of Chronic Ischemic Cardiomyopathy, Pharmaceutics 13, 1269

Get more product info and order the CCC!

VWR.COM

Prices, product, and/or services details are current when published and subject to change without notice. | Certain products or services may be limited by federal, state, provincial, or local regulations. | VWR, part of Avantor, makes no claims or warranties concerning sustainable/green products. Any claims concerning sustainable/green products are the sole claims of the manufacturer and not those of VWR International, LLC and/or Avantor, Inc. or affiliates. All prices are in US dollars unless otherwise noted. Offers valid in US, void where prohibited by law or company policy, while supplies last. | Trademarks are owned by Avantor, Inc. or its affiliates, unless otherwise noted. | Visit vwr.com to view our privacy policy, trademark owners, and additional disclaimers. © 2022 Avantor, Inc. All rights reserved.