USER GUIDE

Preparation of hydrogels for 3D cell culture with Bovine Soluble Collagen

Bovine Soluble Collagen can be polymerized to a threedimensional matrix for 3D cell culture. Cells may be embedded inside the hydrogel (protocol A) or seeded on top (protocol B). Please refer to your preferred protocol below.

For technical support contact our team at sales@bio.viscofan.com.

© Viscofan BioEngineering | REVISION DATE: 07-04-2022

PREPARATION OF HYDROGELS WITH BOVINE SOLUBLE COLLAGEN

Collagen hydrogel for 3D cell culture

GENERAL INTRODUCTION

Viscofan BioEngineering's Bovine Soluble Collagen has a pH of ~3.5 and a collagen concentration of ~5 mg/ml depending on the lot.* Optimized for a certain lot, the following protocols are calculated to generate either soft hydrogels with a final collagen concentration of 1.35 mg/ml (orange rows in table 1+2) or stiffer hydrogels with 3 mg/ml (blue rows in table 1+2) final collagen concentration and neutral pH. If necessary, they have to be adapted to the individual collagen concentration desired. However, the ratio of Bovine Soluble Collagen to NaOH should stay constant in order to generate a hydrogel with neutral pH (also note 5. in the trouble shooting section).

Volumes are calculated for Bovine Soluble Collagen with the lot number 20200421-0001.

*The exact collagen concentration and pH value for each specific lot is provided in the Certificate of Analysis that comes with each product.

Precautions

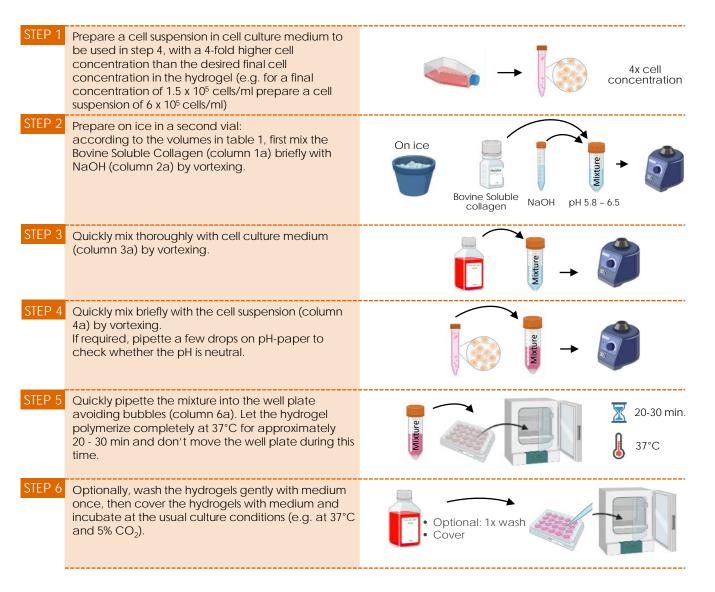
- Liquids should be kept on ice until hydrogel polymerization is intended. Polymerization is induced by rising the pH and temperature.
- When working with soluble collagen, please use appropriate cell culture plastics, media, and reagents as well as aseptic techniques, and ensure adequate conditions for cell growth.
- Due to the high collagen concentration, our Bovine Soluble Collagen has a high viscosity. To avoid pipetting errors, please pipette slowly to allow complete pouring in and out, respectively. Additionally, only dip the end of the pipette tip into the Bovine Soluble Collagen and discard any collagen solution that sticks to the outside of the pipette tip before transferring the correct volume to the mixture tube.

Required material

- Bovine Soluble Collagen, lot number 20200421-0001
- Pipettes
- Multi well plate
- Cell culture medium (e.g. DMEM/Glutamin + 10% FCS)
- Sterile NaOH, 1M
- Optionally: analytical pH-paper, range 0-14

INTENDED USE

Bovine Soluble Collagen is intended for research use only. It is neither intended for human nor animal diagnostic, therapeutic use nor any other clinical use.

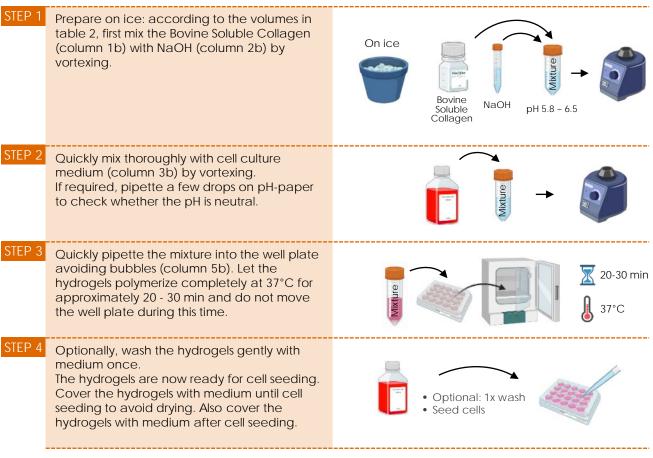

USER GUIDE

PROTOCOL A

Preparation of collagen hydrogels with cells embedded inside the hydrogel

Table 1		1a	2a 3a 4a		5a	6a	
Cells embedded in the hydrogel	Well plate format (volumes for 4 wells*)	Bovine Soluble Collagen [µl]	1 Μ ΝaΟΗ [μl]	Cell culture medium [µl]	Cell suspension [µl] (4-fold of the intended cell end concentration)	End volume of mixture 1a-4a [µl]	Transfer volume of mixture 5a per well* [µl]
For 1.35 mg/ml collagen end concentration	4 x 48-well	650	58	1 000	570	2 278	500
	4 x 24-well	1 300	115	2 000	1 140	4 555	1 000
	4 x 12-well	2 600	230	4 000	2 277	9 107	2 000
	4 x 6-well	5 200	460	8 000	4 555	18 215	4 000
For 3 mg/ml collagen end concentration*	4 x 48-well	1 444	125	144	570	2 283	500
	4 x 24-well	2 900	250	287	1 140	4 577	1 000
	4 x 12-well	5 780	500	574	2 277	9 131	2 000

*Suggested transfer volumes will result in hydrogels of appr. 1 cm thickness. To produce thinner hydrogels, transfer volumes may be adjusted. **Hydrogels with high collagen concentration will polymerize faster. To avoid uneven polymerization, be careful to work fast during the steps 2-5 in protocol A.


PROTOCOL B

USER GUIDE

Preparation of collagen hydrogels with cells seeded on top of the hydrogel

Table 2		1b	2b	3b	4b	5b
Cells seeded on top	Well plate format (volumes for 4 wells*)	Bovine Soluble Collagen [µl]	1 Μ ΝaΟΗ [μl]	Cell culture medium [µl]	End volume of mixture 1b-3b [µl]	Transfer volume of mixture 4b* per well [μl]
For 1.35 mg/ml collagen end concentration	4 x 48-well	650	58	1 570	2 277.5	500
	4 x 24-well	1 300	115	3 140	4 555	1 000
	4 x 12-well	2 600	230	6 280	9 110	2 000
	4 x 6-well	5 200	460	12 560	18 219	4 000
For 3 mg/ml collagen end concentration**	4 x 48-well	1 444	125	714	2 283	500
	4 x 24-well	2 900	250	1 427	4 577	1 000
	4 x 12-well	5 780	500	2 851	9 131	2 000

*Suggested transfer volumes will result in hydrogels of appr. 1 cm thickness. To produce thinner hydrogels, transfer volumes may be adjusted. **Hydrogels with high collagen concentration will polymerize faster. To avoid uneven polymerization, be careful to work fast during the steps 1-3 in protocol B.

Tool-symbols generated with BioRender

USER GUIDE

PROBLEM	SOLUTION			
1. Hydrogel fails to polymerize	 Please check whether the pH of the final mixture is neutral and adjust if necessary (see 5.). Do not move the well plate during the hydrogel polymerization step (step 5 in protocol A and step 3 in protocol B, respectively). 			
2. Hydrogel does not polymerize homogenously	 Especially when aiming at high collagen concentrations, be sure to work fast after addition of NaOH (steps 2-5 in protocol A and steps 1-3 in protocol B) Keep liquids on ice until hydrogel polymerization is intended (when raising pH and temperature). 			
3. Hydrogel appears yellowish instead of red	• Especially with high collagen concentrations, hydrogels might appear yellowish shortly after polymerization but change to red within 1-2 hours. If in doubt whether neutral pH has been achieved, please check whether the pH of the final mixture is neutral and adjust if necessary (see 5.).			
4. Cells die or fail to grow	 Please check whether the pH of the final mixture is neutral and adjust if necessary (see 5.) Please check whether the hydrogel density and the cell seeding density is suitable for your kind of cells. Please check whether enough cell culture medium has been added to or on top of the hydrogel to feed the cells. Use a gentler mixing method in protocol A, step 4. 			
5. Ensuring, checking and adjusting pH of the hydrogel	 The protocols are designed to generate hydrogels with neutral pH. Please ensure that the lot of your Bovine Soluble Collagen corresponds to the lot, the protocol is calculated for. If adjusting the protocol for a different collagen end concentration is necessary or if generally in doubt, whether neutral pH has been achieved, we recommend performing a pre-test using a pH-meter and adjusting the amount of NaOH, if necessary. As a guideline: after addition of NaOH (step 2 in protocol A and step 1 in protocol B) the pH should be between 5.8 and 6.5 in order to result in neutral pH for the finished collagen hydrogel. Alternatively, as a quick check, pipette a few drops of the final mixture on pH paper before gelation starts. Pipette slowly to avoid pipetting errors due to the slow flowing properties of the viscous Bovine Soluble Collagen. Avoid transfer of collagen solution that sticks to the outside of the pipette tip. 			

Bovine Soluble Collagen Order-number: 500060635

All data and recommendations correspond to the present state of our knowledge; they are published without engagement. We reserve the right to make alterations and additions in line with technical developments without prior notice. The customer is obliged to check whether our products meet the technical requirements. Please contact us for questions or support.

Contact us sales@bio.viscofan.com (1) +49 (06201) 86-358

Use collagen scaffolds to improve performance of your 2D & 3D cultures!

